Decision Tree Classifier for Privacy Preservation

نویسندگان

  • Tejaswini Pawar
  • Snehal Kamlapur
چکیده

In recent year’s privacy preservation in data mining has become an important issue. A new class of data mining method called privacy preserving data mining algorithm has been developed. The aim of these algorithms is to protect the sensitive information in data while extracting knowledge from large amount of data. We focus the general classification in a secured manner and introduce a privacy-preserving decision tree classifier using C4.5 algorithm. The entire original dataset is replaced by unreal dataset for preserving the privacy via dataset complementation. This novel approach can be applied directly to the data storage as soon as the first sample is collected and applied at any time during the data collection process. This approach converts the original sample data sets into a group of unreal data sets, from which the original samples cannot be reconstructed without the entire group of unreal data sets. An accurate decision tree can be built directly from those unreal data sets. This paper discusses dataset complementation approach for converting sample dataset into sanitized or altered dataset. It covers system architecture and mathematical model of decision tree classifier for preserving privacy via dataset complementation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Survey on Privacy Preserving Decision Tree Classifier

In recent year’s privacy preservation in data mining has become an important issue. A new class of data mining method called privacy preserving data mining algorithm has been developed. The aim of these algorithms is protecting the sensitive information in data while extracting knowledge from large amount of data. The extracted knowledge is generally expressed in the form of cluster, decision t...

متن کامل

Privacy-Preserving Decision Tree Classification Over Horizontally Partitioned Data

Protection of privacy is one of important problems in data mining. The unwillingness to share their data frequently results in failure of collaborative data mining. This paper studies how to build a decision tree classifier under the following scenario: a database is horizontally partitioned into multiple pieces, with each piece owned by a particular party. All the parties want to build a decis...

متن کامل

Building Privacy-preserving C4.5 Decision Tree Classifier on Multi- Parties

In this paper, we address Privacy-preserving classification problem in a multi-party sense. We focus the general classification in a secured manner and introduce a Privacy-preserving decision tree classifier using C4.5 algorithm without involving third party. C4.5 algorithm is a software extension of the basic ID3 algorithm designed by Quinlan. Our protocol is considerably more efficient than a...

متن کامل

Anomaly Detection Using SVM as Classifier and Decision Tree for Optimizing Feature Vectors

Abstract- With the advancement and development of computer network technologies, the way for intruders has become smoother; therefore, to detect threats and attacks, the importance of intrusion detection systems (IDS) as one of the key elements of security is increasing. One of the challenges of intrusion detection systems is managing of the large amount of network traffic features. Removing un...

متن کامل

Voltage Sag Compensation with DVR in Power Distribution System Based on Improved Cuckoo Search Tree-Fuzzy Rule Based Classifier Algorithm

A new technique presents to improve the performance of dynamic voltage restorer (DVR) for voltage sag mitigation. This control scheme is based on cuckoo search algorithm with tree fuzzy rule based classifier (CSA-TFRC). CSA is used for optimizing the output of TFRC so the classification output of the network is enhanced. While, the combination of cuckoo search algorithm, fuzzy and decision tree...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013